On additive complexity of a sequence of matrices

نویسنده

  • Igor Sergeev
چکیده

The present paper deals with the complexity of computation of a sequence of Boolean matrices via universal commutative additive circuits, i.e. circuits of binary additions over the group (Z, +) (an additive circuit implementing a matrix over (Z, +), implements the same matrix over any commutative semigroup (S, +).) Basic notions of circuit and complexity see in [3, 5]. Denote the complexity of a matrix A over (Z, +) as L(A). Consider a sequence of n × n-matrices An with zeros on the leading diagonal and ones in other positions. It is known that L(An) = 3n− 6, see e.g. [2]. In [4] it was proposed a sequence of matrices Bp,q,n more general than An and the question of complexity of the sequence was investigated. Matrix Bp,q,n has C q n rows and C p n columns. Rows are indexed by q-element subsets of [1..n]; columns are indexed by p-element subsets of [1..n] (here [k..l] stands for {k, k+1, . . . , l}). A matrix entry at the intersection of Q-th row and P -th column is 1 if Q ∩ P = ∅ and 0 otherwise. Consider some simple examples of Bp,q,n. If n < p + q then Bp,q,n is zero matrix. Evidently, B1,1,n = An. By the symmetry of definition Bp,q,n = B q,p,n. Matrices Bp,0,n and B0,q,n are all-ones row and column respectively. So, L(Bp,0,n) = C p n − 1, L(B0,q,n) = 0. Note that by the transposition principle (see e.g. [3]) complexity of matrices Bp,q,n and Bq,p,n satisfies the identity

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower Bounds of Copson Type for Hausdorff Matrices on Weighted Sequence Spaces

Let = be a non-negative matrix. Denote by the supremum of those , satisfying the following inequality: where , , and also is increasing, non-negative sequence of real numbers. If we used instead of The purpose of this paper is to establish a Hardy type formula for , where is Hausdorff matrix and A similar result is also established for where In particular, we apply o...

متن کامل

On the fine spectrum of generalized upper triangular double-band matrices $Delta^{uv}$ over the sequence spaces $c_o$ and $c$

The main purpose of this paper is to determine the fine spectrum of the generalized upper triangular double-band matrices uv over the sequence spaces c0 and c. These results are more general than the spectrum of upper triangular double-band matrices of Karakaya and Altun[V. Karakaya, M. Altun, Fine spectra of upper triangular doubleband matrices, Journal of Computational and Applied Mathematics...

متن کامل

Non-additive Lie centralizer of infinite strictly upper triangular matrices

‎Let $mathcal{F}$ be an field of zero characteristic and $N_{infty‎}(‎mathcal{F})$ be the algebra of infinite strictly upper triangular‎ ‎matrices with entries in $mathcal{F}$‎, ‎and $f:N_{infty}(mathcal{F}‎)rightarrow N_{infty}(mathcal{F})$ be a non-additive Lie centralizer of $‎N_{infty }(mathcal{F})$; that is‎, ‎a map satisfying that $f([X,Y])=[f(X),Y]$‎ ‎for all $X,Yin N_{infty}(mathcal{F})...

متن کامل

Some inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm

Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1209.1645  شماره 

صفحات  -

تاریخ انتشار 2012